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Based on the approaches presented in [Inzh.-Fiz. Zh., 77, No. 4, 10–19 (2004)], the problem on discharging
of the heat accumulated earlier by single heat exchangers and their combination in an infinite ground massif
has been solved. The inefficiency of the accumulation and discharging by single heat exchangers and the high
degree of recovery of the accumulated heat in the case of their clustered arrangement have been established.

Among the promising trends in nontraditional power engineering is the use of solar energy accumulated dur-
ing a warm season for heating of rooms and hot-water supply during a cold season. The required large capacity of
accumulators (storage cells) makes it necessary to focus attention on natural objects, one of which can be a ground
massif. Because of the high thermal resistance of the ground, creation of heat-insulated ground accumulators is imprac-
tical. In this case, one must solve problems of accumulation and discharging of heat in an infinite ground massif. This
feature, with allowance for the discontinuous character of operation of solar collectors, makes it difficult to directly
solve the fundamental equation of nonstationary heat conduction even by numerical methods. The arising problems
have been analyzed in detail in [1], where a combined integral method of solution of problems of ground accumulation
of heat by coaxial and U-shaped heat exchangers vertically arranged in the ground and in which an intermediate heat-
transfer agent, i.e., water heated by solar collectors, circulates, has been proposed and realized; the accumulation by
single heat exchangers and their combination has been considered. In this work, we present, based on the approaches
of [1], the solution of inverse problems: those of recovery of heat from heated ground massifs by heat-exchange sys-
tems used in accumulation.

1. Discharging by Single Heat Exchangers. The diagrams of heat exchangers are identical to those presented
in [1] (Fig. 1). The order of calculations and the form of functions are the same as in accumulation if the heat-flux
density q0 is interpreted as a vector. According to [1], a single-parameter family of temperature-distribution functions
in a ground massif has the form

T − Tm

T0 − Tm
 = (1 − η)3 (1 + 3η − Amη) ,

(1)

where

η = 
r − R0

R − R0
 ;   Am = 

q0 (R − R0)
λm (T0 − Tm)

 ;   q0 = α0 (Twat − Tw) ;   Bim = 
α0 (R − R0)

λm
 . (2)

Unlike accumulation [1], the set of Am values in discharging lies in the interval 


−∞, 0



. Then the distribution (1) must

have its maximum on the segment 0 ≤ η ≤ 1. Investigation of (1) for extremum leads to the relations

ηex = 
Am

4Am − 12
 ,   Tex = Tm + (T0 − Tm) (1 − ηex)

3
 (1 + 3ηex − Amηex) , (3)

according to which ηex is monotonically dependent on Am. The radius Rex corresponding to T = Tex is equal to
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Rex = R0 + ηex (R − R0) , (4)

and the domain of definition of ηex is 0 ≤ ηex ≤ 0.25. The temperature profiles (1) are presented in Fig. 2. Heat propa-
gates in the positive direction of r when r > Rex; when r < Rex we have the inflow of heat to the heat exchanger. Thus,
Tex(Rex) influences both processes and is the determining quantity.

To solve the problem of discharging with prescribed Tm(z) and λm(z) we must find

Twat (t, z) ,   Tw (t, z) ,   T0 (t, z) ,   Tex (t, Rex) ,   R (t, z) ,   Rex (t, z) ,   α0 (t, z) ,   Am (t, z) . (5)

The functions (5) are determined by
(1) the energy equation of the heat-transfer agent

∂Twat

∂z
 = − 2πRw 

αw (Twat − Tw)
Gwatcwat

 ; (6)

(2) the equation of heat transfer through the heat-exchanger wall

Fig. 1. Diagrams of coaxial (a) and U-shaped (b) heat exchangers.

Fig. 2. Temperature distribution in the ground massif in discharging.
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q0 = pw (Tw − T0) ,   pw = 
λw

R0 ln 




R0

Rw





 ; (7)

(3) the equation of variation in the massif temperature when r = Rex

∂Tex

∂t
 = 6am 

T0 − Tm

(R − R0)
2 (1 − ηex) [− 2 + 6ηex + (1 − 2ηex) Am] ; (8)

(4) the equation of conservation of the energy accumulated by the ground

 ∫ 
0

t

dt ∫ 
0

Z

2πR0q0dz = ∫ 
0

Z

dz ∫ 
R0

R

2πρmcm (T − Tm) rdr + ∫ 
R0

R(0)

2πρmcm (T − Tm) r
2
dr + ∫ 

R0

R(Z)

2πρmcm (T − Tm) r
2
dr , (9)

where T − Tm is found according to (1), and the heat-flux density q0 is determined from the third formula of (2);
(5) expression (2) for Am;
(6) the first equation of (3) and formula (4) for determination of Rex;
(7) the second equation of (3) for determination of T0 at the known temperature Tex;
(8) the heat-transfer coefficient αw on the wall (r = Rw) and its equivalent value on the surface

α0 = αw 
Rw

R0
 , (10)

which is determined in simultaneous solution of the thermal and hydrodynamic problems with the use of the existing
dependences for heat exchangers of the types in question.

As has been noted in [1], the temperature of the heat-transfer agent is equalized over the height z in coaxial
and U-shaped heat exchangers. Consequently, in most practical cases the calculated parameters of the process can be
considered to be constant with height, and the difference in the temperatures of water at the inlet Twat.b and outlet
Twat.end of the heat exchanger can be determined according to (6). The mean value of these temperatures corresponds
to a calculated Twat. As far as the "quality" of the energy produced is concerned, it is characterized by the coefficient
of performance of a heat pump. In operation of the pump on the Carnot cycle, we have

εpump = 
Twat + 273

Tpump − Twat
 , (11)

where Tpump is the temperature at the pipe outlet; it is taken to be 55oC here. The discharging efficiency is determined
by the relation

ηt = 
Eiend

Eiin
 , (12)

where Eiin is the excess initial energy of the massif and Eiend is the final value of the recovered energy.
The initial thermal characteristics of the massif discharged are known from solution of the problem of accu-

mulation. The value of q0 is prescribed and is usually constant. Discharging is carried out continuously. Therefore, un-
like the accumulation problem, there are no difficulties with formulation of the initial and boundary conditions for the
problem in question.

The solution of the problem on recovery of the accumulated heat can only be obtained by a numerical
method. Subsequently we have performed calculations for the same characteristics of the interacting systems as in [1]:

(a) the coaxial heat exchanger: R0 = 0.054 m, Rw = 0.050 m, rw = 0.040 m, λw = 17.5 W/(m⋅K), Z = 50 m,
Gwat = 5.0 kg/sec, Twat D 50oC, Re = 0.67⋅105, α0 = 0.86⋅105 W/(m2⋅K), vwat = 1.79 m/sec, and ζ = 0.02;
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(b) the ground: ρm = 1.84⋅103 kg/m3, λm = 1.42 W/(m⋅K), cm = 1.15⋅103 J/(kg⋅K), and Tm = 10oC.
It is noteworthy that, despite the possible variety of the composition of grounds, their determining thermo-

physical characteristics change only slightly. Thus, the specific heat capacity per unit volume takes on values in the
range (1.2–2.6)⋅103 W/(m3⋅K), whereas the thermal diffusivity takes on values in the range (0.1–0.9)⋅10−6 m2/sec.
Thus, the parameters given above are quite characteristic of grounds.

Below, we give results of calculations of the recovery of heat accumulated earlier in controlled operation of a
coaxial heat exchanger with a 24-hour accumulator [1] (for the final parameters T0 = 50oC and R = 2.0 m). The tempera-
ture profile corresponded to the condition Am C 0, and the energy characteristic was eiin = Eiin ⁄ Z = 0.2237⋅109 J/m. The
recovery of heat stopped if the temperature of water in the heat exchanger decreased to the initial temperature of the
ground massif.

Figure 3a shows the dynamics of the process for q0 = −10 W/m2. The discharging was completed on the 23rd
day from the beginning of operation. The final value Tex = 15.66oC points to the considerable quantity of the excess
energy left in the massif. A comparatively low value — Tpump = 55oC — has led to an acceptable "quality" of the
energy (εpump > 6.3). The radius of propagation of heat due to its continuous "drift" attained 5.26 m; the value of ηt
turned out to be equal only to 3.06%. Figure 3b gives results of discharging for q0 = −1 W/m2; the operating time of
the heat exchanger increased and was 130 days. Despite the low final value Tex = 11.20oC, the increase in the ther-
mal-massif radius to R = 11.41 m made it possible to recover only 1.71% of the energy accumulated. A monotonic
change in the final parameters with variation of q0 from −1 to −10 W/m2 (Fig. 4) gives no grounds to develop an
algorithm of time changes in q0 that would substantially improve the index ηt. Thus, both the accumulation of energy
by a single heat exchanger [1] and its discharging should be considered to be inefficient.

2. Discharging by a Combination of Heat Exchangers. According to [1], at the end of ground accumulation
of heat by a cluster of k = m × n heat exchangers, the potential Tbas of the basic accumulation region of volume
Vbas approaches a maximum possible value, whereas in the buffer subregion Vs adjacent to the basic one, the tempera-
ture monotonically changes from Tbas to Tm on the width Rs. In discharging of a thermal massif, peripheral heat ex-
changers are not operated with the aim of maintaining a uniform temperature distribution in Vbas and the number of
heat exchangers operating with the same thermal load (q0 = idem) is found as

kop = mn − 2 (m + n) + 4 . (13)

In what follows, we assume that q0 is a positive value determined by its modulus.
During the first one to two hours of operation of the cluster, we will have the contact of the radii of thermal

action of the heat exchangers, just as in accumulation; from this instant, the heat will be recovered from Vbas when R
= Rj = const (Fig. 5). The temperature profiles are similar to those in accumulation [1]:

Fig. 3. Change in the discharging parameters F for q0 = −10 W/m2 (a) and
q0 = −1 W/m2 (b): 1) −Am; 2) Tex, oC; 3) T0, oC; 4) εpump; 5) R, m; 6) Rex,
m. t, days.
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Tj − T

Tj − T0
 = 











(1 − κ)2 (1 + 2κ − Ajκ) ,

(1 − κ)Aj ,
     

0 ≤ Aj ≤ 3 ;

3 < Aj ≤ ∞ ,
(14)

where

κ = 
r − R0

Rj − R0
 ;   Aj = 

q0 (Rj − R0)
λm (Tj − T0)

 , (15)

and the rate of change in T0 is calculated as

dT0

dt
 = am 

(Tj − T0)
(Rj − R0)

 




6 − 4Aj

(Rj − R0)
 + 

Aj

R0




 ,   0 ≤ Aj ≤ 3 ;

dT0

dt
 = am 

(Tj − T0)
(Rj − R0)

 




Aj (1 − Aj)
(Rj − R0)

 + 
Aj
R0




 ,   3 < Aj ≤ ∞ .

(16)

In the buffer subregion, the dynamics of the processes is no different from their character in accumulation. The tem-
perature distribution and the rate of change in the parameter Rs have the form [1]

T − Tm

Tj − Tm
 = (1 − ψ)3 (1 + 3ψ) ,   ψ = 

u

Rs
 ,   u = x, y ;

dRs

dt
 = 

12am

Rs
 .

(17)

Here u is counted off from the surface along the external normal to Sbas relative to the volume Vbas. The density of
the heat flux absorbed by the buffer subregion is determined by the expression

qs = 
d
dt

 ∫ 
0

Rs

ρmcm (T − Tm) du = 0.4ρmcm 



(Tj − Tm) 

dRs

dt
 + Rs 

dTj
dt




 . (18)

When the value of (18) is negative, the heat flux is directed from the buffer subregion to the basic region. The heat
balance of the basic region of the thermal massif is as follows:

Fig. 4. Change in the final parameters of discharging F: 1) Tex, oC; 2) T0, oC;
3) R, m; 4) duration, decade; 5) ηt, %; 6) Rex, m; 7) −Am⋅10−3. q0, W/m2.
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d
dt

 










ρmcm (Tj − Tm) Vbas − kopZ ∫ 

R0

Rj

2πρmcm (Tj − T) rdr










 = − Sbasqs − 2πkopR0Zq0 . (19)

Having the distribution (14), we can express the integral in (19) in quadratures. The system of equations (14)–(19) is
closed and makes it possible to find Tj(t), T0(t), Rs(t), qs(t), and other parameters of the process, which are determined
by these functions, for the prescribed q0 and the known initial conditions and data on the heat exchangers.

Let us select the case approaching that of practical importance as a computational example. Since the initial
thermal efficiency of a cluster [1] ηt.cl = 1 − (m +n − 1)/mn increases with increase in the number of heat exchangers
k = m × n, it is most efficient to use ground accumulation of heat for heating and hot-water supply of a village with
several thousand people. In such a village, there is usually a school or village stadium an area of whose football field
of the order of 100 × 100 m can be used for underground location of heat exchangers. Ordinary solar collectors make
it possible to obtain an operating-water temperature no higher than 60oC. Therefore, the maximum attainable tempera-
ture in the basic region Vbas will be of the order of Tj,max D 50oC in accumulation. The highest potential of heat must
be strived for in its recovery. If we allow for the considerable thermal resistance of a typical ground massif whose
characteristic has been given above in Sec. 1, we should be oriented, in accumulation, to a heat-flux density of the
order of 300–400 W/m2 at the beginning of the process with a step-by-step reduction ensuring the final potential of
the massif Tj C Tbas C 50oC and to q0 C 50–80 W/m2 in discharging. Since the limiting link of heat transfer is the re-
sistance of the ground, it is impractical to maintain high α0 values (C105 W/m2) and the transition from the viscous-
gravitational regime of flow of the intermediate heat-transfer agent to a turbulent regime is necessary. The positive
aspect of the latter decision lies in decreasing considerably the water flow rate in the circuit.

With allowance for what has been presented above, we have the following characteristics of a coaxial heat ex-
changer: R0 = 0.110 m, Rw = 0.100 m, rw = 0.074 m, λw = 17.5 W/(m⋅K), Z = 100 m, Gwat = 0.33 kg/sec, Re =
1664, α0 = 198.2 W/(m2⋅K), vwat = 0.023 m/sec, and ζ = 0.058. The parameters of a cluster of heat exchangers on a
100 × 100 m site are as follows: m = n = 51, L = 2.0 m, and ηt.cl = 0.961. The thermophysical properties of the
ground are analogous to those given in Sec. 1. The accumulation of heat for q0 = (380–20⋅dec) W/m2 (here dec =


1, 2, ..., 18


 is the decade No.) led to a change in the temperature Twat of the heat-transfer agent from 37.07oC (at the

beginning of the first decade) to 50.87oC (at the end of the eighteenth decade) at a maximum value of 56.99oC falling
within the tenth decade. The final indices are as follows: the linear parameter Rs = 26.55 m, the temperature Tj =
49.24oC, and the quantity of accumulated energy Ei = 0.1361⋅1015 J.

The dynamics of continuous discharging for q0 = 53 W/m2 = const is presented in Fig. 6. The difference
Tj − Twat was no higher than 4oC; the temperature of the heat-transfer agent decreased from 45.32 to 5.88oC. The pa-
rameter Rs increased by 4 m in discharging and attained a value of 30.91 m. The "quality" of the energy produced,

Fig. 5. View of the cluster of heat exchangers (a) and cross section along
1 − 1 at t > tj with the temperature distribution in the massif (b).
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which is characterized by the coefficient of performance of ε of the heat pump, turned out to be high. Noteworthy is
a 100% recovery of the energy accumulated.

Based on the heating rate of 60 W/m2 per unit living floor area (intrafloor heating system), a living density
of 20 m2/man, and an energy consumption by hot-water supply of 250 W/man, accumulated (and then recovered) solar
energy in the quantity Ei = 0.1361⋅1015 would suffice to meet the needs of a village with a population of 6000 people
for 180 days.

The data given here are, unambiguously, evidence in favor of the cluster-type solution of accumulation and
discharging, not in favor of "single" operation of thermal devices.

3. Comparison of the Methods of Solution. Let us compare the method proposed here and in [1] for solu-
tion of problems of nonstationary heat conduction to classical methods of solution. A comparison for spatially bounded
bodies has been given in [2] and points to the equivalence of both approaches in mathematical terms. We analyze
them for the cases of infinitely extended objects. Naturally, we cannot expect a complete quantitative coincidence of
the results, as in [2]. The reason is mainly the finite radius R(t) of propagation of heat, which has been introduced
here, just as in [1]; this seems more correct from the physical viewpoint than R → ∞ but comes into conflict with the
properties of the fundamental heat-conduction equation. For this reason, the fullness of the temperature profile for a
finite R(t) must be larger than that for R → ∞ on condition that the energy balance is strictly observed. Below, we
give such a comparison using, as an example, the problem on pulse heating in the ε vicinity of the cross section with
x0 = 0 (on the portion −ε < x0 < +ε) of an infinite bar with a constant cross section and lateral heat insulation. The
classical solution is known to have the form

T (t, x) = 
2εT (0, 0)
2√πamt

 exp 



− 
(x − ξ)2

4amt




 , (20)

where (x0 − ε) < ξ < (x0 + ε) and −∞ < x < +∞. According to the procedure proposed, we have

T (t, x) = 
2εT (0, 0)
0.8Rs (t)

 (1 − ψ)3 (1 + 3ψ) , (21)

where ψ = x ⁄ Rs, (x0 − Rs) ≤ x ≤ (x0 + Rs) and, according to (17), Rs = √24amt . We take ε → 0, T(0, 0) → ∞, and
2εT(0, 0) = 1, as is customary in classical solutions. Let us transform (20), separating the group corresponding to
the expression for Rs(t) in it, and obtain an expression equivalent to the classical solution

Fig. 6. Change in the discharging parameters F by a cluster of heat exchang-
ers: 1) −qs, W/m2; 2) Rs, m; 3) Tj, 

oC; 4) Twat, 
oC; 5) εpump. t, days.

Fig. 7. Temperature distribution in pulsed heating of the bar: 1) according to
the proposed procedure; 2) according to the classical solution T(t, 0) has been
determined from (23).
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T (t, ψ) = 
1

0.724Rs
 exp (− 6ψ2) ,   − ∞ < ψ < + ∞ . (22)

Then formula (21) will take the form

T (t, ψ) = 
1

0.8Rs
 (1 − ψ)3 (1 + 3ψ) ,   0 ≤ ψ ≤ 1 . (23)

We note, first of all, the structural similarity of both dependences. The preexponential factor in (22) and the coefficient
corresponding to it in (23) yield a value of T(t, 0) that is 0.8/0.724 = 1.106 times higher in classical solution than that
in solution according to the procedure proposed. A comparison of (22) and (23) on the segment 0 ≤ ψ ≤ 1 is given in
Fig. 7 and is in complete agreement with the above prediction.

Thus, modeling (performed here and in [1]) of the dynamics of ground accumulation and discharging of heat
has revealed the high operating efficiency of a combination of heat exchangers as compared to single systems.

NOTATION

A, parameter; a, thermal diffusivity, m2/sec; c, specific heat, J/(kg⋅K); Ei, energy, J; G, flow rate of the inter-
mediate heat-transfer agent, kg/sec; H, height of the heat-insulated portion of a heat exchanger (Fig. 1), m; h, height
of the protective ground layer (Fig. 1), m; k, number of heat exchangers in a cluster; L, step, m; m and n, number of
heat exchangers in rows parallel to the x and y axes; N, power of the external source (sink), W; q, heat-flux density,
W/m2; R, radius (linear dimension) of propagation of heat, m; Re, Reynolds number; S, area of the heat-transfer sur-
face, m2; T, temperature, oC and K; t, time, sec; V, volume, m3; v, velocity, m/sec; x, y, z and r, z, u, coordinates, m;
Z, operating height of the heat exchanger, m; α, heat-transfer coefficient, W/(m2⋅K); εpump, coefficient of performance
of the heat pump; ε, infinitesimal, m; λ, thermal conductivity, W/(m⋅K); ξ, coordinate, m; η and ψ, dimensionless co-
ordinates; ηt, thermal-efficiency coefficient; ζ, coefficient of hydraulic resistance; ρ, density, kg/m3. Subscripts: 0, pa-
rameters for r = R0; water, water; in, initial; e, end; m, massif; b, beginning; bas, basic; op, operating, j, parameters
in joint operation of heat exchangers, t, thermal (heat); w, wall, parameters of the interior heat-exchanger wall; cl,
cluster of k exchangers; ex, extremum; s, quantities counted off from Sbas; pump, pump; max, maximum.
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